翻訳と辞書
Words near each other
・ Manimekalai
・ Manimekalai (1959 film)
・ Manimekhala
・ Manimeswaram
・ Manimi
・ Manimou Camara
・ Manimuktha River
・ Manimuthar River
・ Manimutharu
・ Manimuzhakkam
・ Manin
・ Manin (surname)
・ Manin conjecture
・ Manin matrix
・ Manin obstruction
Manin triple
・ Manin, Pas-de-Calais
・ Manin, Syria
・ Manina Vlizianon
・ Manina, the Girl in the Bikini
・ Maninagar
・ Maninagar (Vidhan Sabha constituency)
・ Maninagar railway station
・ Maninder Singh
・ Maninder Singh (actor)
・ Maninder Singh (cricketer)
・ Maninder Singh (footballer)
・ Maninder Singh Dhir
・ Maninderjeet Singh Bitta
・ Manindra Agrawal


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Manin triple : ウィキペディア英語版
Manin triple
In mathematics, a Manin triple (''g'', ''p'', ''q'') consists of a Lie algebra ''g'' with a non-degenerate invariant symmetric bilinear form, together with two isotropic subalgebras ''p'' and ''q'' such that ''g'' is the direct sum of ''p'' and ''q'' as a vector space.
Manin triples were introduced by , who named them after Yuri Manin.
classified the Manin triples where ''g'' is a complex reductive Lie algebra.
==Manin triples and Lie bialgebras==

If (''g'', ''p'', ''q'') is a finite-dimensional Manin triple then ''p'' can be made into a Lie bialgebra by letting the cocommutator map ''p'' → ''p'' ⊗ ''p'' be dual to the map ''q'' ⊗ ''q'' → ''q'' (using the fact that the symmetric bilinear form on ''g'' identifies ''q'' with the dual of ''p'').
Conversely if ''p'' is a Lie bialgebra then one can construct a Manin triple from it by letting ''q'' be the dual of ''p'' and defining the commutator of ''p'' and ''q'' to make the bilinear form on ''g'' = ''p'' ⊕ ''q'' invariant.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Manin triple」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.